

The fp shell

INTERESTING RESULTS FOR $g_{9/2}$ SHELL

(identical particles)

• 3 identical particles:

We define:
$$\Delta E_3 = E_3(I_{\text{max}}) - E_3(I_{\text{min}}) = E_3(21/2) - E_3(3/2)$$

- 5 particles:
 - With seniority-conserving interaction: $\Delta E_5 = \Delta E_3$
 - With $Q \cdot Q$ interaction: $\Delta E_5 = -\Delta E_3$
 - In $f_{7/2}$, $\Delta E_5 = \Delta E_3$ even with $Q \cdot Q$

3 particles

5 particles

Topic 2. 4neutrons (holes) in g9/2-- 96Pd

J_0	v_0	v=4	v=4	v=2
1.5	3	-0.045216	0.486667	0.284268
2.5	3	0.007841	0.392310	-0.181186
3.5	3	-0.619461	0.034481	0.176295
4.5	1	0.000000	0.000000	0.612373
4.5	3	-0.055655	-0.344807	0.344932
5.5	3	0.451454	0.259542	0.363442
6.5	3	0.574601	-0.298436	0.156447
7.5	3	0.240746	0.489004	-0.243006
8.5	3	-0.138306	0.305968	0.381690

• With seniority mixing, one v=4 state remains pure:

$$I = 4$$

J_0	v_0	v=4
1.5	3	0.1222
2.5	3	0.0548
3.5	3	0.6170
4.5	1	0.0000
4.5	3	0.0000
5.5	3	-0.4043
6.5	3	-0.6148
7.5	3	-0.1597
8.5	3	0.1853

LH I DICUT VEATER C 12, 00,202 (202)

II. FURTHER RELATIONS

We can write

$$M = \sum_{J_A} M(J_A) E(J_A), \tag{6}$$

We finally get

$$M(J_A) = \sum_{J_3} [j^3 J_3 j|] j^4 I = 4v = 2]$$

$$\times [j^3 J_3 j|] j^4 I = 4v_a = 4]$$

$$\times \left[\frac{1}{3} + \frac{2}{3} \left\{ \begin{array}{ccc} j & j & J_A \\ J_3 & j & J_A \end{array} \right\} (2J_A + 1) \right] \qquad (2J_A + 1)$$

4.

for $J_A = 0, 2, 4, 6,$ and 8.

97AG

83ZR

Topic 3.96Cd

 What happens in N=Z 96Cd when we set ALL T=0 2-body matrix elements to zero.

16⁺ Spin-Gap Isomer in ⁹⁶Cd

B. S. Nara Singh, ¹ Z. Liu, ² R. Wadsworth, ¹ H. Grawe, ³ T. S. Brock, ¹ P. Boutachkov, ³ N. Braun, ⁴ A. Blazhev, ⁴ M. Górska, ³ S. Pietri, ³ D. Rudolph, ⁵ C. Domingo-Pardo, ³ S. J. Steer, ⁶ A. Ataç, ⁷ L. Bettermann, ⁴ L. Cáceres, ³ K. Eppinger, ⁸ T. Engert, ³ T. Faestermann, ⁸ F. Farinon, ³ F. Finke, ⁴ K. Geibel, ⁴ J. Gerl, ³ R. Gernhäuser, ⁸ N. Goel, ³ A. Gottardo, ² J. Grębosz, ⁹ C. Hinke, ⁸ R. Hoischen, ^{3,5} G. Ilie, ⁴ H. Iwasaki, ⁴ J. Jolie, ⁴ A. Kaşkaş, ⁷ I. Kojouharov, ³ R. Krücken, ⁸ N. Kurz, ³ E. Merchán, ³ C. Nociforo, ³ J. Nyberg, ¹⁰ M. Pfützner, ¹¹ A. Prochazka, ³ Zs. Podolyák, ⁶ P. H. Regan, ⁶ P. Reiter, ⁴ S. Rinta-Antila, ¹² C. Scholl, ⁴ H. Schaffner, ³ P.-A. Söderström, ¹⁰ N. Warr, ⁴ H. Weick, ³ H.-J. Wollersheim, ³ P. J. Woods, ² F. Nowacki, ¹³ and K. Sieja¹³

Table II: Wave functions and energies (in MeV, at the top) of selected states of $^{\sim}$ Cd calculated with the INTd interaction (see text) with T=0 matrix elements set to zero.

J = 11		and the first of the second	CREATING ACTION	A-1100-100-10-12	10-4 m 8 m 10		
		5.0829	5.3798	6.8295	7.4699	7.5178	7.8842
J_p	J_n			T = 1	T = 1	T = 1	T = 1
4	8	0.7071	0.0000	0.2933	-0.5491	0.3351	-0.012
6	6	0.0000	0.0000	0.2913	0.5605	0.6482	-0.4253
6	8	0.0000	0.7071	0.5350	0.0396	-0.4111	-0.2079
8	4	-0.7071	0.0000	0.2933	-0.5491	0.3351	-0.0121
8	6	0.0000	-0.7071	0.5350	0.0396	-0.4111	-0.2079
8	8	0.0000	0.0000	0.4130	0.2822	0.1319	0.8558
J = 12			Editor Solding		1000000		
		5.1165	5.2336	5.4865	7.5293	7.5959	12.4531
J_p	J_n				T = 1	T = 1	T = 2
4	8	0.5699	0.2803	-0.0961	-0.4783	0.5208	0.2957
6	6	0.5712	-0.7151	0.1498	0.0000	0.0000	-0.3742
6	8	0.0925	0.3679	0.4629	-0.5208	-0.4783	-0.3766
8	4	0.5699	0.2803	-0.0961	0.4783	-0.5208	0.2957
8	6	0.0925	0.3679	0.4629	0.5208	0.4783	-0.3766
8	8	-0.0846	-0.2465	0.7284	0.0000	0.0000	0.6337
J = 13							
		5.3798	7.6143	7.8873			
J_p	J_n		T = 1	T = 1			
6	8	0.7071	0.5265	-0.4721			
8	6	-0.7071	0.5265	-0.4721			
8	8	0.0000	0.6676	0.7445			
J = 14	Į	and the second second	And a second and a second				
		5.3798	5.6007	7.8515			
J_p	J_n			T = 1			
6	8	0.7071	0.0000	-0.7071			
8	6	0.7071	0.0000	0.7071			
8	8	0.0000	1.0000	0.0000			
J = 15	,	18-24-2-2-2-2-1					
		7.9251					
J_p	J_n	T = 1					
8	8	1.0000					
J = 16	j	225					
	1972	5.6007					
J_p	J_n						
8	8	1.0000					

Table VI: Wave functions and energies (in MeV, at the top) of selected states of 96 Cd calculated with the interaction INTd with T=0 matrix elements set to zero.

							2.0
J =	= 11	este edantar	oaddan a		tarawan -	Managar	
		5.0829	5.3798	6.8295	7.4699	7.5178	7.8842
J_p	J_n			T = 1	T = 1	T = 1	T = 1
4	8	0.7071	0.0000	0.2933	-0.5491	0.3351	-0.0121
6	6	0.0000	0.0000	0.2913	0.5605	0.6482	-0.4253
6	8	0.0000	0.7071	0.5350	0.0396	-0.4111	-0.2079
8	4	-0.7071	0.0000	0.2933	-0.5491	0.3351	-0.0121
8	6	0.0000	-0.7071	0.5350	0.0396	-0.4111	-0.2079
8	8	0.0000	0.0000	0.4130	0.2822	0.1319	0.8558
J=	= 12						
		5.1165	5.2336	5.4865	7.5293	7.5959	12.4531
J_p	J_n				T = 1	T = 1	T = 2
4	8	0.5699	0.2803	-0.0961	-0.4783	0.5208	0.2957
6	6	0.5712	-0.7151	0.1498	0.0000	0.0000	-0.3742
6	8	0.0925	0.3679	0.4629	-0.5208	-0.4783	-0.3766
8	4	0.5699	0.2803	-0.0961	0.4783	-0.5208	0.2957
8	6	0.0925	0.3679	0.4629	0.5208	0.4783	-0.3766
8	8	-0.0846	-0.2465	0.7284	0.0000	0.0000	0.6337
-							

J=13 5.3798 7.6143 7.8873

6 8 0.7071 0.5265 -0.4721 8 6 -0.7071 0.5265 -0.4721 8 8 0.0000 0.6676 0.7445

> J=14 5.3798 5.6007 7.8515

6 8 0.7071 0.0000 -0.7071 8 6 0.7071 0.0000 0.7071 8 8 0.0000 1.0000 0.0000

> J=15 7.9251 8 8 1.0000

> > J=16 5.6007

8 8 1.0000

 j^3 configuration is given by $J_{\text{max}} = M_{\text{max}} = j + j - 1 + j - 2 = 3j - 3$. There is only one antisymmetric state with $M = M_{\text{max}} - 1$ obtained by antisymmetrizing the state with $m_1 = j$, $m_2 = j - 1$ and $m_3 = j - 3$. Hence this is the state with $J = M_{\text{max}}$, $M = M_{\text{max}} - 1$ and there is no antisymmetric state with J = 3j - 4 in any j^3 configuration. There are two possible parents (for $j > \frac{3}{2}$) of such a state, had it existed, namely, $J_1 = 2j - 1$ and $J_1 = 2j - 3$. We can choose one of these to be the principal parent and then the c.f.p. of the other should vanish. According to (15.7) we obtain

$$\begin{cases} j & j & 2j-1 \\ 3j-4 & j & 2j-3 \end{cases} = 0 \quad \text{for any} \quad j > \frac{3}{2}$$

If we consider states of particles in the l-orbit which are fully antisymmetric in their space coordinates we may use a similar argument. In that case, due to the symmetry properties of Clebsch-Gordan coefficients space antisymmetric states of two particles have odd values of L_0 . The same considerations lead to vanishing of the 6j-symbol written above also for values of j which are integers.

The amendication of coefficients of freetional parentees can be

Single-j-shell calculations $(f_{7/2})$

Examples 3

• Scandium 43

I=6.5

3.50013 4.95078 Jp Jn 3.5 4.0 0.98921 -0.14647 ---> 1 0 3.5 6.0 0.14647 0.98921 0 1

I=7.5

3.51123 7.29248 JP JN T=3/2 3.5 4.0 0.87905 -0.47673 ---> Unchanged 3.5 6.0 0.47673 0.87905

- · There are also degeneracy conditions
 - For ⁴³Sc, to explain the degeneracies of 13/2⁻, 17/2⁻, and 19/2⁻, all with the configuration [j, 6], we note

$${ j \ j \ (2j-1) } { j \ I \ (2j-1) } = \frac{-1}{8j-2}$$

for I = 13/2, 17/2, and 19/2 (but not for I = 15/2).

- For ⁴⁴Ti, we get two degeneracy conditions:

$$\begin{cases} j & j & (2j-3) \\ j & j & (2j-1) \\ (2j-3) & (2j-1) & I \end{cases} = \frac{1}{4(4j-5)(4j-1)} ,$$

$$\begin{cases} j & j & (2j-1) \\ j & j & (2j-1) \\ (2j-1) & (2j-1) & I \end{cases} = \frac{1}{2(4j-1)^2}$$

Arima and Zhao also derived these conditions using a jpairing Hamiltonian. Racah noted that for electrons in the f shell the calculation of coefficients of fractional parentage could be greatly simplified by noting that the exceptional group G2 is a subgroup of SO(7) [11].

The proof involved noting the following 6-j relation: ${5 \ 5 \ 3 \ 3 \ 3} = 0$. Regge [12] found several symmetry relations for 6-j symbols, one of which is

Early on, Judd and Elliott [13] used this to show that

See also the work of Judd and Li [1]. Furthermore we emphasized at the beginning of this work that for quartet states of three electrons in the g shell the space wave function has to be antisymmetric. This leads to the vanishing of the 6-j on the right-hand side above. This is easier to understand than

- Re 44Sc and 52Mn (3proton holes and one neutron hole)
- But we find that in the light member of the cross-conjugate pair the J=2+ state. In 52Mn the J=6+ state is ground state.
- But in both nuclei J=2+ and J=6+ are isomeric.
- We find (2j-1) rule--State with (2j-1) is isomeric.

- (2j-1)rule and J=2+ rule.
- j=7/2: J=6+ state in 52Mn is ground state
- and J=2+ is isomeric.
- Also in 44Sc J=6+ is isomeric and J=2+ is ground state.
- In 96Ag (g9/2) (2j-1)=8+ and J=2+ are nearly degenerate and both are isomeric
- In h11/2 shell J=2+ and J=10+ isomeric

Table VII: Two-body matrix elements in increasing spin from J=0 to $J=J_{\rm max}$. The even spins have isospin T=1 and the odd ones T=0.

	f_7	/2	g_9	$h_{11/2}$	
J	INTa	INTb	INTc	INTd	$Q \cdot Q$
0	0.0000	0.0000	0.0000	0.0000	-1.0000
1	0.6111	0.5723	1.1387	1.1387	-0.9161
2	1.5863	1.4465	1.3947	1.3947	-0.7544
3	1.4904	1.8224	1.8230	1.8230	-0.5325
4	2.8153	2.6450	2.0823	2.0823	-0.2687
5	1.5101	2.1490	1.9215	1.9215	0.0070
6	3.2420	2.9600	2.2802	2.2802	0.2587
7	0.6163	0.1990	1.8797	1.8797	0.4434
8			2.4275	2.4275	0.5105
9			1.4964	0.7500	0.4026
10					0.0549
11					-1.6044

Table I: Yrast spectra of ⁴⁴Ti and ⁵²Fe calculated with the interactions INTa and INTb respectively (see text) and compared with experiment [8].

	E(MeV)					
	4	⁴ Ti	⁵² Fe			
J	INTa	Exp.	INTb	Exp.		
0	0.000	0.000	0.000	0.000		
1	5.669		5.442			
2	1.163	1.083	1.015	0.849		
3	5.786		5.834			
4	2.790	2.454	2.628	2.384		
5	5.871		6.463			
6	4.062	4.015	4.078	4.325		
7	6.043		5.890			
8	6.084	(6.509)	5.772	6.361		
9	7.984		7.791			
10	7.384	(7.671)	6.721	7.382		
11	9.865		8.666			
12	7.702	(8.040)	6.514	6.958		

9 12 10	9
	$ \frac{10}{32} $ $ \frac{7}{8} $
6	6
4	4
2	2
0	0

Table II: Yrast spectra of ⁴⁴Sc and ⁵²Mn calculated with the interactions INTa and INTb respectively (see text) and compared with experiment [8].

	9808	E(MeV)	
	44	Sc	52	Mn
J	INTa	Exp.	INTb	Exp.
0	3.047		2.774	
1	0.432	0.667	0.443	0.546
2	0.000	0.000	0.202	0.378
3	0.764	0.762	0.836	0.825
4	0.713	0.350	0.851	0.732
5	1.276	1.513	1.404	1.254
6	0.381	0.271	0.000	0.000
7	1.272	0.968	1.819	0.870
8	3.097		2.572	(2.286)
9	3.390	2.672	2.792	(2.908)
10	4.793	4.114	4.365	4.164
11	4.638	3.567	3.667	(3.837)

Table III: Energy levels for the case of 3 protons and 1 neutron in the $g_{9/2}$ shell with the interactions INTc and INTd (see text), and compared with the experimental data for 96 Ag.

		E(MeV)	(2.5.1
J	INTc	INTd	Exp.
0	0.246	0.900	loso.
1	0.463	0.483	
2	0.000	0.097	
3	0.638	0.588	
4	0.394	0.349	
5	0.774	0.737	
6	0.450	0.371	
7	0.850	0.861	
8	0.350	0.000	0.000
9	0.872	0.492	0.470
10	2.188	1.748	(1.719)
11	2.344	1.930	(1.976)
12	3.004	2.550	
13	3.087	2.556	2.643
14	3.382	3.070	
15	3.287	2.645	2.643 + x

 STATIC MAGNETIC MOMENTS (Rutgers-Bonn) AND QUADRUPOLE MOMENTS OF EXCITED STATES TABLE V. Calculated and experimental g(I) factors in 70 Zn.

I_i^{π}	Exp't.	FPD6 fp	KB3	GXPFA fp	JJ4B $p_{3/2} f_{5/2} p_{1/2} g_{9/2}$
2+	$+0.38(2)^{a}$	+1.52	+1.83	+1.89	+0.276
2_{2}^{+}	+0.47(22)	+1.26	+1.99	+1.53	+0.100
41+	+0.37(14)	+1.12	+1.18	+1.12	+0.317

^aA value, g = +0.38(4), was obtained in Ref. [1].

TABLE III. Static quadrupole moments in e fm². Two sets of effective charges are used $e_p = 1.5$ and $e_n = 0.5$ (displayed first) and $e_p = 1.5$ and $e_n = 1.1$. N/A indicates unavailable data; references are given for available experimental data.

	⁷⁰ Ge	⁷² Ge	⁷⁴ Ge	⁷⁶ Ge
$Q(2_1^+)$				
Expt.	+4(3) [13]	-12(8)[14]	-19(2)[15]	-14(4) [16]
	+3(6) or 9(6) [17]	-13(6)[17]	-25(6)[17]	-19(6)[17]
JJ4B	+15/+25	+11/+19	-6/-6	-15/-19
JUN45	+10/+17	+13/+22	+12/+20	+2/+5
$Q(2_2^+)$				
Expt.	-7(4)[13]	+23(8) [14]	+26(6) [15]	+28(6) [16]
JJ4B	-15/-25	-11/-19	+5/+6	+15/+20
JUN45	-13/-21	-13/-22	-12/-19	-0.1/-2
$Q(4_1^+)$				
Expt.	+22(5)[13]	N/A	N/A	-1(5)[16]
JJ4B	+3/+11	+3/+10	-8/-9	-14/-17
JUN45	+1/+8	+8/+8	+11/+19	-1/+1

III. RESULTS

In Table I we present for even-even nuclei the magnitude of the quadrupole ratio and E(4)/E(2), the ratio of energies. Again, in the pure rotation model r_Q is equal to 1 and $E(4)/E(2) = \frac{4 \times 5}{2 \times 3} = 3.33$. In a simple vibrational limit the quadrupole moment would be zero (i.e. the static quadrupole moment would vanish) and E(4)/E(2) = 2.

The results are also shown in Fig 1. The upper curve is the ratio E(4)/E(2) and the lower curve is the ratio involving $Q(2^+)$ and B(E2).

3. Summary of 2_1^+ excitation energies, B(E2)'s (in Weisits) and $g(2_1^+)$ factors for all stable even-A Ca isotopes (see [4]). Closed circles refer to our present and former data circles to Ref. [3,5]. The g factors are compared to the

ANATOMY of an INVERSION

 As we go through the even even Argon isotopes 2 different interactions nicely track for A=36,38,40,42 and 44 but suddenly diverge for A=46

IADLE III. g factors iii the even-even argon isotopes.

³⁸ Ar	⁴⁰ Ar	⁴² Ar	⁴⁴ Ar	⁴⁶ Ar
0.24(12)	-0.02(2))		
0.083	-0.441	-0.455	-0.441	0.083
0.308	-0.197	-0.095	-0.022	+0.100
0.319	-0.228	-0.084	-0.040	0.513
N/A	-0.046	-0.481	-0.046	N/A
1.198	0.120	0.096	0.045	-0.070
1.187	0.136	0.075	0.346	-0.514
N/A	-0.490	-0.509	-0.490	N/A
1.134	-0.354	-0.277	-0.206	-0.190
1.132	-0.357	-0.289	-0.246	-0.388
	0.24(12) 0.083 0.308 0.319 N/A 1.198 1.187	0.24(12) -0.02(2) 0.083 -0.441 0.308 -0.197 0.319 -0.228 N/A -0.046 1.198 0.120 1.187 0.136 N/A -0.490 1.134 -0.354	0.24(12) -0.02(2) 0.083 -0.441 -0.455 0.308 -0.197 -0.095 0.319 -0.228 -0.084 N/A -0.046 -0.481 1.198 0.120 0.096 1.187 0.136 0.075 N/A -0.490 -0.509 1.134 -0.354 -0.277	0.24(12) -0.02(2) 0.083 -0.441 -0.455 -0.441 0.308 -0.197 -0.095 -0.022 0.319 -0.228 -0.084 -0.040 N/A -0.046 -0.481 -0.046 1.198 0.120 0.096 0.045 1.187 0.136 0.075 0.346 N/A -0.490 -0.509 -0.490 1.134 -0.354 -0.277 -0.206

TABLE VI. The $J = \frac{3}{2}^+ - J = \frac{1}{2}^+$ splittings of the odd K isotopes in MeV.

	Experimental	WBT	SDPF-U
⁴¹ K	0.980476	1.106	0.854
43K	0.5612	1.109	0.672
45 K	0.4745	0.871	0.345
47 K	-0.3600	0.507	-0.320
⁴⁹ K	0.200	0.729	0.078

FIG. 5. excitation e $B(E2; \uparrow)$ is arrow.

$$E^*(J = 0^+, T = 2) = BE(^{96}Ag) - BE(^{96}Pd) + V_C,$$
 (1)

where V_C includes all charge-independent violating effects. We here assume that V_C arises from the Coulomb interaction and use the formula of Anderson et al. [1]:

$$V_C = E_1 Z / A^{(1/3)} + E_2 \,, \tag{2}$$

where $Z = (Z_1 + Z_2)/2$.

- Partial dynamical symmetries
- unique $(g9/2)^4$ state v=4 J=4 (6)
- Symmetries for J values in 96Cd which are not present in 96Pdwhen T=0 two body matrix elements set equal to zero.
- (2j-1) rule 3 protons Ineutron
- Static moments in "g9/2" shell.